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Abstract
We apply the method of group foliation to the complex Monge–Ampère
equation (CMA2) with the goal of establishing a regular framework for finding
its non-invariant solutions. We employ the infinite symmetry subgroup of the
equation, the group of unimodular biholomorphisms, to produce a foliation of
the solution space into leaves which are orbits of solutions with respect to the
symmetry group. Accordingly, CMA2 is split into an automorphic system and a
resolvent system which we derive in this paper. This is an intricate system and
here we make no attempt to solve it in order to obtain non-invariant solutions.

We obtain all differential invariants up to third order for the group
of unimodular biholomorphisms and, in particular, all the basis differential
invariants. We construct the operators of invariant differentiation from which
all higher differential invariants can be obtained. Consequently, we are able to
write down all independent partial differential equations with one real unknown
and two complex independent variables which keep the same infinite symmetry
subgroup as CMA2. We prove explicitly that applying operators of invariant
differentiation to third-order invariants we obtain all fourth-order invariants.
At this level we have all the information which is necessary and sufficient for
group foliation.

We propose a new approach in the method of group foliation which is
based on the commutator algebra of operators of invariant differentiation.
The resolving equations are obtained by applying this algebra to differential
invariants with the status of independent variables. Furthermore, this algebra
together with Jacobi identities provides the commutator representation of the
resolvent system. This proves to be the simplest and most natural way of
arriving at the resolving equations.

PACS numbers: 0230J, 0220T, 0420C, 0460

1. Introduction

An important problem for partial differential equations admitting a Lie symmetry group is the
construction of solutions that admit no continuous symmetries. According to the terminology
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of group analysis [1, 2] these are non-invariant solutions. In particular, the construction of
the metric for K3 which is the most important gravitational instanton requires non-invariant
solutions of the complex Monge–Ampère equation. On a complex differentiable manifold M
of dimension two the complex Monge–Ampère equation, hereafter denoted by CMA2, is given
by

det uij̄ = κ (1)

uij̄
def= ∂2u

∂ζ i ∂ζ̄ j
(2)

where subscripts denote partial derivatives and a bar denotes complex conjugation.
Gravitational instantons are given by Kähler metrics

ds2 = uij̄ dζ i dζ̄ j (3)

with κ = +1, the elliptic case of equation (1), where summation over the two values of
both unbarred and barred indices is understood. Kähler metrics with self-dual curvature are
Ricci-flat solutions of the Einstein field equations with Euclidean signature [3].

In our opinion the method of group foliation provides a regular framework for finding non-
invariant solutions of differential equations. We develop this method further by introducing and
extensively using the commutator algebra of the operators of invariant differentiation. In this
paper we apply this method to CMA2 with the idea of setting up a framework for constructing
its solutions that admit no continuous symmetries.

An alternative approach which is based on conservation laws and associated ‘potential
symmetries’ was constructed by Bluman [4]. However, in a multi-dimensional problem such
as CMA2 there is no regular way of obtaining gauge constraints for potentials and hence for
the existence of potential symmetries [5].

In section 2 we discuss the main features of the method of group foliation as applied
to CMA2 and the most essential infinite symmetry group of unimodular biholomorphic
transformations that we shall use. The differential invariants up to and including third order
are constructed explicitly in section 3. Operators of invariant differentiation are presented in
section 4. Except for the basis invariants, higher-order differential invariants are generated by
the application of these operators to lower-order invariants. At third order we are able to fix all
of the basis differential invariants. We derive the commutator algebra of vector fields formed
by the operators of invariant differentiation. This is used to obtain important relations between
fourth-order invariants. In section 5 we split the set of differential invariants that survive on the
solution manifold of CMA2 into two sets where one set consists of differential invariants that
will be considered as new independent variables and the remaining differential invariants are
considered as functions of the first set. This fixes the general form of the automorphic system.
After a suitable redefinition of the operators of invariant differentiation the commutator algebra
simplifies. Applying this algebra to differential invariants treated as independent variables we
obtain the major part of the resolvent system. The remaining resolving equations are obtained
by the integrability conditions between the automorphic equations and CMA2. We discover
that the commutator algebra of the operators of invariant differentiation and its Jacobi identities
are equivalent to the complete set of resolving equations for CMA2. The resolving equations
form an intricate system. Even though a search for its solutions is the main motivation for this
work, we shall not consider it here.
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2. Group foliation

The approach we shall follow is based on the theory of ‘group splitting’ which was originally an
idea of Lie [1], developed by Vessiot [6], and resurrected in modern form by Ovsiannikov [2].
According to this method we use a symmetry subgroup of the equation, preferably an infinite
one, for producing a foliation of the equation into an automorphic system and a resolvent
system. After that the real problem is reduced to the solution of the resolving equations.
The automorphic system keeps the symmetry group of the original equations. Starting with
a particular solution of the resolvent system, the automorphic system is fixed and all of its
solutions can be obtained by applying symmetry transformations of the group to any particular
solution of the automorphic system. This property makes it integrable. Thus non-invariant
solutions can be obtained explicitly provided we can find solutions of the resolving equations.
Depending on the problem at hand, this task can be equally difficult as the original problem,
or even harder, but also it can happen that even a simple solution of the resolving equations
can lead to highly non-trivial solutions of the original differential equation.

We feel that group splitting provides a regular framework for obtaining non-invariant
solutions of partial differential equations. In the case of invariant solutions we are dealing
with a submanifold that has dimension smaller than the general solution manifold. This
leads to symmetry reduction of the original equations with the loss of all other solutions.
However, in group splitting there is no symmetry reduction because we are concerned with
the orbits of non-invariant solutions and these orbits are themselves invariant submanifolds of
the general solution manifold with the same dimension as the original solution manifold. In
our approach we shall refer to group splitting by the more descriptive name group foliation
because we are foliating the solution manifold into invariant submanifolds of orbits of
solutions.

An important new contribution to group foliation that we present here lies in the systematic
use of the commutator algebra of operators of invariant differentiation. In this way we avoid
the usual procedure of arriving at the resolving equations by a straightforward but lengthy
derivation of integrability conditions of the automorphic system. The commutator algebra of
the operators of invariant differentiation also results in important relations between higher-order
differential invariants which provides a check on the completeness of the resolvent system.
Finally, the commutator algebra together with the Jacobi identities turns out to be equivalent
to the complete set of resolving equations and provides a commutator representation of the
resolvent system. It seems to be an analogue of the Lax representation for the multi-dimensional
case. This would make the resolvent system integrable if some generalization of the inverse
scattering method can be associated with this commutator representation. Thus the use of the
commutator algebra of operators of invariant differentiation greatly simplifies the theory of
group foliation both in conceptual understanding as well as in calculations.

Classical symmetry reduction imposes extra conditions in the form of new partial
differential equations compatible with the original equation in order to make the process
of finding the invariant solution simpler than the general solution. A similar simplification
without restriction to invariant solutions is provided by group foliation, namely, for each
particular solution of the resolving equations the role of such extra conditions is played by
the automorphic system. Just as in the case of symmetry reduction we now have a simpler
problem of finding a particular solution instead of a general one. However, the important
difference between these two approaches lies in the fact that this particular solution need not
be an invariant solution of the original equation.

We choose for the group foliation the most essential infinite subgroup of the total symmetry
group of CMA2 obtained by Boyer and Winternitz [7], namely the group of all biholomorphisms
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in two complex variables with unit Jacobian which will be referred to as

BiHol(M). (4)

Then we construct the basis of differential invariants and operators of invariant differentiation
for this group. All the differential invariants are obtained starting from the basis invariants. It
turns out that this can be accomplished at the level of third prolongation. We restrict ourselves
only to the set of invariants which survive on the solution manifold of CMA2. Then we fix the
general form of automorphic system by choosing a set of four basis differential invariants which
we consider as independent variables and regard the remaining four to be arbitrary smooth
functions of the first set. Finally, we derive the integrability conditions of the automorphic
system in its general form to end up with the resolving equations. These are partial differential
equations for the functions expressing the dependent differential invariants in terms of the
independent ones. In principle one could find out which solutions of the resolving equations
correspond to invariant solutions of CMA2 and eliminate them from further consideration.
However, here we shall not study such additional requirements. If any other solution of the
resolving equations is obtained, then by virtue of the automorphic property the system can be
integrated to yield non-invariant solutions of CMA2.

The differential invariants are produced by the basis invariants and the action of the
operators of invariant differentiation on the basis. Hence one important by-product of our
analysis is that with this knowledge of all differential invariants we construct the full set
of partial differential equations of arbitrary order in one real unknown and two complex
independent variables that remain invariant under the group of arbitrary biholomorphisms with
unit Jacobian. CMA2 itself is expressed as the constancy of a second-order basis differential
invariant.

3. Prolongation spaces, basis vector fields and differential invariants

The elliptic CMA2 is given explicitly by

u11̄u22̄ − u12̄u21̄ = 1 (5)

with the unknown real-valued function u depending on two complex coordinates ζ 1, ζ 2 and
their complex conjugates ζ̄ 1, ζ̄ 2. We shall consider the prolongation structure of CMA2 where
the unknown u and its partial derivatives will be regarded as new independent variables. The
order of prolongation, K , will refer to the maximal order of partial derivatives of u which are
included as independent variables. The original complex manifold M will be prolonged to
ZK(M) with partial derivatives up to order K acting as new local coordinates. We have the
operator of total differentiation

Di = ∂i +
∑
I

uIi ∂uI (6)

where the symbol I = (i1, i2, . . . , is) is a multi-index and for each value of l we have
il = 1, 2, 1̄, 2̄. The sum in equation (6) runs only over the values of a multi-index for which
i1 � i2 � · · · � is where we introduce an ordering relation 1 < 2 < 1̄ < 2̄. This notation is
standard for prolongation structure and in the theory of group analysis [2, 8–10]. The definition
of the operator of total differentiation is such that whenDi is formally applied to any function
depending on ζ i, ζ̄ j , u, ui, ui1i2 , . . . , ui1i2...is , with the partial derivatives ui1i2...is treated as
independent variables, they produce the same result as a common total partial derivative applied
to a composite function obtained by the substitution foru a particular solution. That is, when we
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substitute for u a particular solution depending on the original independent variables, namely
the coordinates, then on the solution manifold ui1i2...is represents the usual partial derivative.

The total Lie group of symmetry point transformations1 for equation (5) was determined
by Boyer and Winternitz [7] who also obtained the complete classification of its symmetry
subgroups. For group foliation we shall use its most essential infinite subgroup, namely the
group of all unimodular biholomorphisms. The generator of BiHol(M) is given by

X = 1
2 i

(
U2∂1 − U1∂2 − U2̄∂1̄ + U1̄∂2̄

)
(7)

where ∂i denotes the partial derivative with respect to ζ i . U is a real-valued function of two
complex variables subject to the linear system of equations

U11̄ = 0 U22̄ = 0 U12̄ = 0 U21̄ = 0 (8)

with the solution that U is the real part of an arbitrary biholomorphic, or antibiholomorphic
function. This result is responsible for the fact that only the purely holomorphic, or
antiholomorphic partial derivatives of U will survive in the prolongation formulae below.

Differential invariants are invariants of the symmetry group in the prolongation space.
Differential invariants up to a certain order will depend on the derivatives of unknowns up
to that order. The maximal order of these derivatives is called the order of the differential
invariant. We need to find all functionally independent differential invariants up to a certain
order K for the infinite symmetry subgroup generated by the vector field (7). In other words,
we shall find all independent partial differential equations up to orderK with the one unknown
and four independent variables which keep the same infinite symmetry subgroup as CMA2.

It is important to calculate the number of functionally independent differential invariants
for the fixed orderK of a prolongation for the symmetry group used for the foliation. In what
follows number refers to the number of real variables only and a complex variable will be
counted as two. For determining the number of functionally independent invariants we must
know the number rK of linearly unconnected generators in the prolongation space2 which
gives us the dimension of generic orbits of the symmetry group [2]. By definition, linearly
unconnected generators cannot be expressed as linear combinations of other generators with
functional coefficients depending upon local coordinates in the prolongation space. This is
a much stronger requirement than linear independence where only constant coefficients are
considered. If K is the order of prolongation, the maximal order of partial derivatives of the
unknown u involved, and νK is the dimension of the prolongation space, then the number of
functionally independent differential invariants up to the orderK with respect to the symmetry
group is νK − rK . It is convenient to keep in mind the general expression for the dimension of
the prolongation space [2]

νK = p + q
(K + p)!

K!p!
K = 0, 1, 2, . . .

where p and q are the numbers of independent and dependent variables, respectively, and K
is the order of prolongation. For equation (5) p = 4, q = 1 and we obtain

νK = 4 +
(K + 4)!

K! 4!
(9)

for the dimension of the prolongation space of orderK for CMA2. We have already remarked
that by number we understand the number of real variables, this was already the case above
when we took p = 4.

1 It turns out that CMA2 does not possess a symmetry group of contact transformations.
2 As well as for the unprolonged space with K = 0.
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We start from the unprolonged space for equation (5) with the local coordinates
ζ 1, ζ 2, ζ̄ 1, ζ̄ 2, u and the dimension ν0 = 5. The generator (7) of any one-parameter subgroup
of the infinite symmetry group is

X = U1X1 + U2X2 + U1̄X1̄ + U2̄X2̄

X1 = − 1
2 i ∂2 X2 = 1

2 i ∂1

X1̄ = 1
2 i ∂2̄ X2̄ = − 1

2 i ∂1̄

(10)

which is the same as the linear combination of the four basis generators (7). Partial derivatives
in the independent variables give rise to the four linearly unconnected generators Xi , so that
r0 = 4, ν0 − r0 = 1 and we have only one obvious independent invariant, namely u, with
respect to the infinite group generated by the vector fields X of the form (10).

This result means that there are no non-constant invariant solutions of CMA2 with
respect to the whole infinite symmetry subgroup BiHol(M). Thus whenever we mention
invariant solutions we mean solutions of CMA2 invariant with respect to linear combinations
of generators of the following subgroups of the total symmetry group of CMA2; namely, some
one-parameter subgroups of BiHol(M) and other subgroups which are not involved in our
construction such as the groups of translations, rotations and dilatations [7].

For the first prolongation we take the four first derivatives of u as additional local
coordinates so that the dimension of the space becomes ν1 = 9. Using standard formulae
[2, 8–10] we obtain the first prolongation of the symmetry generator (7) which results in
additional terms to X proportional to all the second derivatives of U apart from those which
vanish owing to equations (8)

1
X = X +

∑
ij

Uij
1
Xij +

∑
ī j̄

Uīj̄

1
Xīj̄ (11)

where

1
X11 = 1

2 i u2∂u1

1
X22 = − 1

2 i u1∂u2

s
1
X12 = 1

2 i (u2∂u2 − u1∂u1)

(12)

and
1
Xīj̄ is the complex conjugate of the corresponding

1
Xij . This is a general property at each

level of prolongation so that here and in the following we do not need to write the barred
quantities. At this level we have only four additional basis vector fields ∂ui , ∂uī which are
obviously linearly unconnected. This results in two linear connections between six operators
(12) and their complex conjugates reducing the total number to r1 = 8. Hence the number of
independent differential invariants is still equal to ν1 − r1 = 1 and we are left again with the
invariant u.

Next we consider the second prolongation withK = 2 and dimension ν2 = 19 where ten
second derivatives of u come into play as the new local coordinates. Standard prolongation
formulae [2, 8–10] for the generator (7) lead to

2
X = X +

∑
ij

Uij
2
Xij +

∑
ī j̄

Uīj̄

2
Xīj̄ +

∑
ijk

Uijk
2
Xijk +

∑
ī j̄ k̄

Uīj̄ k̄

2
Xīj̄ k̄ (13)

containing all the third purely holomorphic, or antiholomorphic derivatives of U which do not

vanish as a consequence of equations (8). In equation (13) the operators
2
Xij have additional
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terms compared with
1
Xij of equation (12) that come from the second prolongation

2
X11 = 1

2 i (u2∂u1 + 2u21∂u11 + u22∂u21 + u21̄∂1̄1 + u22̄∂u2̄1
)

2
X22 = − 1

2 i (u1∂u2 + u11∂u12 + 2u12∂u22 + u11̄∂1̄2 + u12̄∂u2̄2
)

2
X12 = 1

2 i(u2∂u2 − u1∂u1 + 2u22∂u22 − 2u11∂u11 + u21̄∂u1̄2
+ u22̄∂u2̄2

− u11̄∂u1̄1
− u12̄∂u2̄1

)

(14)

and operators with three indices
2
X111 = 1

2 i u2∂u11

2
X112 = 1

2 i (u2∂u12 − u1∂u11)

2
X122 = 1

2 i (u2∂u22 − u1∂u12)
2
X222 = − 1

2 i u1∂u22

(15)

which arise only in the second prolongation.

In the second prolongation all six operators
2
Xij become linearly unconnected, while among

the operators
2
Xijk , which appear as prolongations of the six unconnected operators

2
Xij , also

six are linearly unconnected and there exist two linear relations connecting them. To obtain
them explicitly we shall solve six out of the eight equations (15) and their complex conjugates
with respect to each of the six partial derivative operators ∂uij , ∂uīj̄ and substitute the result into
the other two of these equations.

At the level of second prolongation we have r2 = 16 linearly unconnected vector fields
2
Xi,

2
Xij ,

2
Xijk and the number of functionally independent differential invariants is ν2 −r2 = 3.

Apart from the original invariant u we have two second-order invariants

µ = u11̄u22̄ − u12̄u21̄ (16)

λ = u1u2̄u21̄ + u2u1̄u12̄ − u1u1̄u22̄ − u2u2̄u11̄ (17)

which consist of the left-hand side of CMA2 and its Lagrangian [11]. Thus we are left with
only two independent invariant variables on the solution manifold of CMA2.

In the theory of group foliation it is generally assumed that the number of independent
variables in the resolving equations must be the same as in the original equations [2] in order to
ensure that no solutions of the original equations are lost. This means that for CMA2 we need
at least five independent differential invariants. Four of these differential invariants will be
regarded as independent variables and the remaining ones will be considered to be a function
of these four. At the level of second prolongation we have only two, so the third prolongation
is necessary.

For the third prolongationK = 3 and the dimension is ν3 = 39 with 20 independent third
partial derivatives of u acting as the new local coordinates. In this case prolongation formulae
for the generator X given in equation (7) lead to the expression
3
X = X +

∑
ij

Uij
3
Xij +

∑
ī j̄

Uīj̄

3
Xīj̄ +

∑
ijk

Uijk
3
Xijk +

∑
ī j̄ k̄

Uīj̄ k̄

3
Xīj̄ k̄

+
∑
ijkl

Uijkl
3
Xijkl +

∑
ī j̄ k̄l̄

Uīj̄ k̄l̄

3
Xīj̄ k̄l̄ (18)

containing terms proportional to all those fourth derivatives of U that do not vanish by

equations (8). In equation (18) the operators
3
Xij ,

3
Xijk have additional terms as compared

with
2
Xij ,

2
Xijk of equations (14) and (15) arising from the third prolongation.
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To see that the third prolongation is sufficient for our purposes we need to evaluate the
number of linearly unconnected vector fields. Indeed, we have four vector fields Xi and six
3
Xij which were linearly unconnected in the second prolongation and also keep this property
in the third prolongation. This brings their total number to ten. Furthermore, we expect that

all eight vector fields
3
Xijk which were connected in the second prolongation by two linear

relations become linearly unconnected in the third prolongation, increasing the total number

of such operators to 18. Finally, ten operators
3
Xijkl arise only in the third prolongation as a

result of prolongation of the eight linearly unconnected operators
3
Xijk . Hence we expect that

only eight of them will be linearly unconnected so that two linear relations must exist among
them. That adds up to the total number of r3 = 26 linearly unconnected generators and to
ν3 − r3 = 39 − 26 = 13 functionally independent differential invariants at the third order
of prolongation which at this stage appears to be sufficient for group foliation. However, the
precise determination that third-order prolongation is sufficient for group foliation of CMA2

requires knowledge of the third-order differential invariants. Then we can explicitly check
which of these differential invariants become constant on the solution manifold of CMA2

and thereby determine the number of truly independent variable invariants. For this purpose
we shall need the operators of invariant differentiation and the full list of basis differential
invariants which provide the complete set of differential invariants. This will be given in the
next section.

The calculation of third-order invariants is a quite complicated problem and we shall
delegate the details to the appendix. Here we shall present the final result of these calculations
which consists of the list of all the functionally independent third-order differential invariants

l = u2̄(u1ϕ2 − u2ϕ1)− u1̄(u1ψ2 − u2ψ1) (19)

L = u2̄(ϕ̄ϕ2 − ψ̄ϕ1)− u1̄(ϕ̄ψ2 − ψ̄ψ1) (20)

m = u22̄ϕ1 − u12̄ϕ2 − u21̄ψ1 + u11̄ψ2 (21)

M = ϕ̄(u11̄u222̄ − u21̄u122̄ − u12̄u221̄ + u22̄u121̄)− ψ̄(u11̄u122̄ − u21̄u112̄ − u12̄u121̄ + u22̄u111̄)

(22)

ν = ψ(u1ϕ2 − u2ϕ1)− ϕ(u1ψ2 − u2ψ1) (23)

which are all complex. Here ϕ and ψ are defined by

ϕ
def= u1u21̄ − u2u11̄ ψ

def= u1u22̄ − u2u12̄ (24)

which turn out to be important, though non-invariant, quantities. Finally, for future purposes
it will be convenient to note that the second-order differential invariants are expressible as

µ = µ̄ = 1
2 (ψ1̄ − ϕ2̄) λ = λ̄ = u2̄ϕ − u1̄ψ (25)

in terms of ϕ,ψ .
In the next section we shall show that some of these differential invariants can be obtained

very simply by the action of the operators of invariant differentiation on second-order invariants.
Thus, at the third order of prolongation all the functionally independent differential

invariants of the symmetry group of CMA2, namely the group of arbitrary unimodular
biholomorphisms, are given by arbitrary smooth functions of

u λ µ l l̄ L L̄ M M̄ m m̄ ν ν̄. (26)

In section 5 we shall use the explicit expressions for the differential invariants in group foliation
of CMA2.
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4. Operators of invariant differentiation and basis of differential invariants

Operators of invariant differentiation commute with the prolonged generator of any one-
parameter subgroup of the symmetry group used for the foliation [2]. They are linear
combinations of the operators of total differentiation with functional coefficients depending
upon local coordinates of the prolongation space. In the case of CMA2 there exist four such
operators

δ = u1D2 − u2D1 (27)

and

$ = ϕ̄ D2 − ψ̄ D1 (28)

together with their complex conjugates. The action of the operators of invariant differentiation
increases the order of prolongation

δ

$

}
: ZK(M) → ZK+1(M) (29)

and acting on any differential invariant they produce again a differential invariant of one
higher order. In C2 there exist two independent holomorphic and antiholomorphic operators
of differentiation and the total number of independent operators of invariant differentiation
must necessarily be the same. The quantities ϕ,ψ defined in equations (24) are components
of the operator of invariant differentiation $̄. These are not differential invariants themselves
but they play an important role in the construction of differential invariants. Finally, we note
the results

ϕ = δ(u1̄) ψ = δ(u2̄) $(ln uk̄) = −µ k = 1, 2 (30)

for the action of the operators of invariant differentiation on the first partial derivatives of u.
With the aid of operators of invariant differentiation it is possible to present some third-

order independent differential invariants in compact form. We have 13 differential invariants,
namely u at zeroth order, two second-order invariants λ,µ which are real and ten third-order
invariants l, L,m,M, ν together with their complex conjugates.

The second-order real invariant

λ = $(u) (31)

is quasilinear in the second derivatives of u. The operator of invariant differentiation δ
annihilates u

δ(u) = 0 (32)

and does not give rise to a new differential invariant, u is in the kernel of δ. The invariant
µ, which is just the left-hand side of CMA2, is a basis invariant. On the solution manifold of
CMA2 we have µ = 1. In order to account for CMA2 in section 5 it will be useful to express
µ through ϕ and ψ from equation (25).

Eight third-order differential invariants are obtained by the operators of invariant
differentiation acting on two second-order invariants λ and µ

l = δ(λ) (33)

L = $(λ) + µλ (34)

m = δ(µ) (35)

M = $(µ) (36)
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together with their complex conjugates. The remaining two third-order invariants ν and ν̄ are
basis invariants which cannot be produced by the action of operators of invariant differentiation
on second-order invariants. This was the reason for the necessity of the third prolongation.
Nevertheless, the basis invariant ν can be expressed through the operator δ acting on the
non-invariant quantities ϕ and ψ

ν = ψδ(ϕ)− ϕδ(ψ) (37)

which is the same as equation (23). All of these invariants were obtained by a straightforward
solution of the equations expressing the invariance conditions for the third prolongation. Here
we see that apart from the basis invariant ν third-order differential invariants can be obtained
by the action of the operators of invariant differentiation on second-order invariants.

Operators of invariant differentiation form the algebra of vector fields determined by the
commutation relations

[δ, δ̄] = $̄−$ [$, $̄] = 1

λ
(L$̄− L̄$) +

(
µl

λ
−m

)
δ̄ −

(
µl̄

λ
− m̄

)
δ (38)

[δ,$] = 1

λ

(
l$− (L + λµ)δ

)
[δ, $̄] = µδ − ν

λ
δ̄ +

l

λ
$̄ (39)

and the complex conjugates of equations (39). Due to these relations not all of the higher-order
invariants obtained by the action of the operators of invariant differentiation are functionally
independent. By applying six commutation relations (38) and (39) including their complex
conjugates to the invariants λ and µ we derive 12 relations between fourth-order invariants
generated by the action of the operators of invariant differentiation on the third-order invariants

δ(l̄) = δ̄(l) + L̄− L (40)

$(l) = δ(L) + µl − λm (41)

$(L̄) = $̄(L) + λ(M − M̄) + m̄l −ml̄ (42)

δ(L̄) = $̄(l) + µl + λm +
1

λ
(lL̄− νl̄) (43)

δ(M) = $(m) +
1

λ

(
lM − (L + λµ)m

)
(44)

δ(m̄) = δ̄(m) + M̄ −M (45)

$(M̄) = $̄(M) +
1

λ
(LM̄ − L̄M) +

µ

λ
(lm̄− l̄m) (46)

δ(M̄) = $̄(m) + µm +
1

λ
(lM̄ − νm̄) (47)

and their complex conjugates. In the next section we show that an additional five relations
follow from the explicit expressions for differential invariants by cross differentiation and
combining them with CMA2.

To summarize, the basis of differential invariants consists of

u µ ν ν̄ (48)

and the full set of differential invariants for CMA2 at arbitrary order can be obtained by
the repeated action of the operators of invariant differentiation on basis invariants and taking
arbitrary smooth functions of the result. The crucial point is that no further basis invariants
appear at higher orders of prolongation. This can be surmised by counting the number of
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Table 1. Differential invariants. The arrows ↑ and ↗ represent the action of the operators of
invariant differentiation $ and δ, respectively.

Z4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
↑ ↗ ↑ ↗ ↑ ↗ ↑ ↗ ↑ ↗

Z3 L− λµ l M m ν

↑ ↗ ↑ ↗
Z2 λ 0 µ

↑ ↗
Z0 u

functionally independent invariants expected at orderK > 3 and the number we would obtain
by applying the operators of invariant differentiation to invariants at order K − 1. Three is
the last level at which the expected number of invariants is more than the number of invariants
we can construct by applying operators of invariant differentiation. The situation changes
dramatically at level K = 4 where the number of fourth-order differential invariants obtained
by applying the operators of invariant differentiation is 40 and on account of 12 relations
between them and five additional relations given in the next section we have 23 invariants.
This coincides with the number of fourth-order independent invariants expected at the fourth
prolongation. Hence we have the constructive proof that we have obtained the full set of basis
differential invariants.

In table 1 we show the basis differential invariants and further differential invariants
obtained by the action of the operators of invariant differentiation. This knowledge of all
differential invariants enables us construct the full set of independent partial differential
equations of arbitrary order in one real unknown and two complex independent variables
that remain invariant under the group of arbitrary unimodular biholomorphisms. In particular,
CMA2 is given by µ = 1.

5. Automorphic system and resolving equations

Up to now we have not used CMA2 itself but only its symmetry properties. To account for
the equation itself we consider the differential invariants (26) on a solution manifold of this
equation. Then five of them are eliminated,

µ = 1 M = 0 m = 0 M̄ = 0 m̄ = 0 (49)

and we are left with the eight invariants

u λ l l̄ L L̄ ν ν̄. (50)

For group foliation we must choose among these eight a set of four which will be considered
as independent variables. In the theory of group foliation it is customary [2] that in order not
to lose any solutions the number of differential invariants to be regarded as independent has to
be the same as the number of independent variables in the original equation (5), namely four.

We choose as independent variables u, the second-order invariant λ and the simplest
pair l, l̄ of third-order invariants. Then the remaining four invariants L, L̄, ν, ν̄ will be smooth
functionsF, F̄ ,G, Ḡof the independent ones. It should be noted that this choice of independent
variables is by no means unique and there are other possible choices of independent variables,
however, then the resulting relations are much more complicated. Thus we fix the general form
of the automorphic system for CMA2

L = F(u, λ, l, l̄)

ν = G(u, λ, l, l̄)
(51)
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together with their complex conjugate equations. On account of equations (51) and (49) the
relations (40)–(47) between the fourth-order differential invariants become

δ(l̄) = δ̄(l) + F̄ − F (52)

F̄l$(l) + F̄l̄$(l̄) + λF̄u + (F − λ)F̄λ = Fl$̄(l) + Fl̄$̄(l̄) + λFu + (F̄ − λ)Fλ (53)

$(l) = Flδ(l) + Fl̄δ(l̄) + l(Fλ + 1) (54)

$̄(l) = F̄lδ(l) + F̄l̄δ(l̄) + l(F̄λ − 1)− 1

λ
(lF̄ − l̄G) (55)

and their complex conjugates with all other relations identically satisfied due to equations (49).
The unknown functions F,G are complex and they will satisfy partial differential equations
resulting from algebraic compatibility and integrability conditions of the set of relations
(52)–(55) completed by five more independent relations. These additional equations are
also projections of some further relations between fourth-order invariants which follow from
integrability conditions for the partial differential equations (51) between themselves as well
as with CMA2. The character of equations (51) as a set of partial differential equations comes
from the explicit expressions for the differential invariants obtained earlier. The resulting
partial differential equations for the unknown functions F,G are called resolving equations.
Our main goal in this section is to obtain this resolvent system.

There are two types of integrability conditions arising from the automorphic system (51)
together with CMA2. First, there exist inner integrability conditions for equations (51) alone.
They arise from the explicit expressions for the differential invariants and equations (51). Then
there is the problem of compatibility of equations (51) with CMA2 itself which will give rise
to outer integrability conditions.

To study the inner integrability conditions of the automorphic system (51) we rewrite the
explicit expressions (19), (21), (20), (23) for the differential invariants l, m,L, ν, respectively,
using the operators of invariant differentiation. As an example, we note that, in particular, m
is expressible as

m = 1

λ

[
µ

(
u2̄δ(ϕ)− u1̄δ(ψ)

)
+ ψ$(ϕ)− ϕ$(ψ)

]
.

Then using the automorphic system (51) and the expressions for differential invariants we
obtain a linear algebraic system for the operators of invariant differentiation acting on ϕ andψ ,

u2̄δ(ϕ)− u1̄δ(ψ) = l

ϕ$(ψ)− ψ$(ϕ) = µl − λm

u2̄$(ϕ)− u1̄$(ψ) = F(u, λ, l, l̄)

ψδ(ϕ)− ϕδ(ψ) = G(u, λ, l, l̄)

(56)

which has a non-vanishing determinant provided λ �= 0. In fact, a detailed analysis of the
condition λ = constant shows that it is incompatible with CMA2 itself. Hence we take λ �= 0
and solve equations (56) algebraically,

δ(ϕ) = 1

λ
(ϕl − u1̄G) δ(ψ) = 1

λ
(ψl − u2̄G) (57)

$(ϕ) = 1

λ

(
ϕF + u1̄(µl − λm)

)
$(ψ) = 1

λ

(
ψF + u2̄(µl − λm)

)
(58)

which brings them to a form suitable for investigating their integrability conditions upon cross
differentiation with δ and $. The result

Gl$(l) +Gl̄$(l̄) + δ(l) = G− λGu − (F − λ)Gλ +
3

λ
(FG + l2) (59)
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is expressible solely through differential invariants and operators of invariant differentiation.
However, this equation cannot be regarded as a resolving equation because it contains fourth-
order differential invariants generated by the action of operators of invariant differentiation δ
and $ on the third-order invariants l, l̄. We note that if we substitute L and ν for F and G
in equations (57) and (58), respectively, then cross differentiation results in a new complex
relation expressing $(ν) in terms of other fourth-order invariants generated by the operators
of invariant differentiation acting on third-order invariants

$(ν) = λδ(m)− µδ(l) + µν +
3

λ

(
Lν + µl2 − λlm

)
(60)

and we can recognize this to be the same as equation (59) if we use equations (51) and account
for CMA2 by putting µ = 1 and m = 0, cf equations (49).

Next we turn to the derivation of differential outer integrability conditions of the
automorphic system (51) using CMA2. For this purpose it will be convenient to start with
the first derivatives of CMA2 in the form (25)

(ψ̄1̄)1 − (ϕ̄1̄)2 = 0 (ψ̄2̄)1 − (ϕ̄2̄)2 = 0 (61)

and combine these equations with the complex conjugate of the system (57) and (58). The
resulting equations

F̄l$(l) + F̄l̄$(l̄) + δ(l̄) = −(F − λ)F̄λ − λF̄u + F̄ +
1

λ

(|G|2 + 2|F |2 + 3|l|2) (62)

$(l̄)− Ḡlδ(l)− Ḡl̄δ(l̄) = lḠλ + l̄ +
1

λ
(l̄F − lḠ) (63)

are once again expressible solely through invariants. We remark again that if we substitute L
and ν for F and G, respectively, in the complex conjugates of equations (57) and (58), then
combining these equations with equations (61) we obtain two more complex equations:

$(L̄) + µδ(l̄)− λδ(m̄) = 1

λ

(|ν|2 + 2|L|2 + 3µ|l|2) + µL̄− lm̄− 2(ml̄ + λM̄) (64)

$(l̄)− δ(ν̄) = 1

λ
(l̄L− lν̄) + µl̄ − 3λm̄ (65)

which, as in equation (60), are relations between fourth-order invariants generated by the
operators of invariant differentiation acting on third-order invariants. By using the relations
(40) and (41) between fourth-order invariants we can check that equation (64) coincides with
its complex conjugate. Hence in addition to 12 relations between these invariants obtained
in the previous section we have now obtained five more relations (60), (64), (65) and their
complex conjugates. Thus we obtain 23 independent fourth-order invariants generated by the
operators of invariant differentiation which is the same as the number expected at the fourth
prolongation. This completes the constructive proof that we have indeed obtained the complete
set of basis differential invariants.

Next we turn to the derivation of resolving equations for the complex unknowns F and
G. Up to now we have obtained 11 independent relations (52)–(55), (59), (62), (63) and their
complex conjugates which are not yet the resolving equations since they involve actions of
δ,$ on l, l̄. To get rid of such terms we choose these quantities as new unknowns, called
auxiliary variables, and add new equations which follow from these definitions.

A straightforward procedure for deriving resolving equations is to solve algebraically
the 11 relations mentioned above with respect to δ(l), δ(l̄), $(l) and $(l̄) and their complex
conjugates to obtain three algebraic compatibility conditions implied by these relations. Next,
applying cross differentiation by δ,$, δ̄, $̄ and using their commutation relations (38) and
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(39), we obtain six integrability conditions of the equations, expressing δ(l), δ(l̄),$(l) and
$(l̄) and their complex conjugates. Finally, we use the formulae for δ(l), δ(l̄),$(l) and $(l̄)
and express them in terms of the auxiliary variables. In this way we obtain the complete set of
12 resolving equations. This approach enables us to avoid the usual lengthy procedure of cross
differentiation using partial derivatives that has been commonly employed in group splitting.
However, it also requires long calculations even though they are much simpler than the usual
procedure. We shall therefore not follow this approach here.

The elegant way of deriving the resolving equations and presenting them in a compact
form is to first simplify the commutator algebra of the operators of invariant differentiation by
introducing a new pair of such operators Y and Z and their complex conjugates through the
relations

δ = λY $ = λZ δ̄ = λȲ $̄ = λZ̄. (66)

Then the commutation relations (38) and (39) are simplified to

[Y,Z] = −2

λ
Y (67)

[Y, Z̄] = 1

λ2
(F̄ Y −GȲ ) (68)

[Y, Ȳ ] = 1

λ2
(l̄Y − lȲ ) +

1

λ
(Z̄ − Z) (69)

[Z, Z̄] = 1

λ2
(lȲ − l̄Y ) +

1

λ
(Z̄ − Z). (70)

We note that the commutator algebra of the original operators of invariant differentiation in
equations (38) and (39) was given without projection onto the solution manifold of CMA2,
whereas here we have used equations (49) accounting for CMA2 and the general form of
the automorphic system (51). The action of the new operators of invariant differentiation on
differential invariants is determined by the properties (31)–(34) combined with the definitions
(66)

Y (u) = 0 Y (λ) = l

λ
Z(u) = 1 Z(λ) = *

λ
(71)

where *
def= F − λ. The differential invariants (35) and (36) are annihilated on the solution

manifold of CMA2.
Now we introduce complex auxiliary variables ϑ, σ, ρ, τ through the action of Y,Z, Ȳ

and Z̄ on l and l̄

Y (l) = σ Y (l̄) = τ Z(l) = ϑ Z(l̄) = ρ (72)

and their complex conjugates which are all functions of the independent variables u, λ, l, l̄.
We shall see that the auxiliary variables will serve as additional unknowns in the first-order
version of resolving equations. Formulae (71) and (72) determine the explicit expression for
the new operators of invariant differentiation

Y = σ∂l + τ∂l̄ +
l

λ
∂λ

Z = ϑ∂l + ρ∂l̄ +

(
F

λ
− 1

)
∂λ + ∂u

(73)
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which consist of basis vector fields in the space of those differential invariants that are taken
as independent variables with coefficients that are differential invariants themselves. This is
the projection of the new operators of invariant differentiation onto the space of differential
invariants.

A new and easy way of obtaining resolving equations is to apply the commutation relations
(67)–(70) for Y,Z, Ȳ , Z̄ to the differential invariants u, λ, l, l̄ treated as independent variables.
Applying them to u gives only identities. The resulting 12 resolving equations have the form

τ̄ = τ +
1

λ
(F − F̄ ) (74)

Y (ϑ)− Z(σ) +
2

λ
σ = 0 (75)

Y (ρ)− Z(τ) +
2

λ
τ = 0 (76)

Z(τ̄ )− Ȳ (ϑ) +
1

λ2
(F τ̄ − Ḡσ ) = 0 (77)

Z̄(σ )− Y (ρ̄) +
1

λ2
(F̄ σ −Gτ̄) = 0 (78)

Ȳ (σ )− Y (τ̄ ) +
1

λ2
(l̄σ − lτ̄ ) +

1

λ
(ρ̄ − ϑ) = 0 (79)

Z(ρ̄)− Z̄(ϑ)− 1

λ
(ρ̄ − ϑ) +

1

λ2
(l̄σ − lτ̄ ) = 0 (80)

Y (F ) = ϑ − l

λ
(81)

Y (F̄ ) = ρ̄ +
l

λ
+

1

λ2
(lF̄ − l̄G) (82)

Z(F̄ ) = −τ +
1

λ
F̄ +

1

λ2
(|G|2 + 2|F |2 + 3|l|2) (83)

Y (Ḡ) = ρ − l̄

λ
− 1

λ2
(l̄F − lḠ) (84)

Z(G) = −σ +
1

λ
G +

3

λ2
(l2 + FG) (85)

together with all of their complex conjugates. Not all of these equations are obtained in this
manner3. Namely, equations (83)–(85) follow from equations (62), (63) and (59), respectively.
The reason for the singular status of these three equations will be clear from the proof of the
following theorem.

Theorem 1. The commutator algebra (67)–(70) of the operators of invariant differentiation
Y,Z, Ȳ , Z̄ together with the Jacobi identities for these commutators is equivalent to the
resolvent system and hence provides a commutator representation for this system.

This theorem means that the complete set of the resolving equations is encoded in the
commutator algebra of the operators of invariant differentiation.

For the proof we use the expressions (73) for the operators Y and Z and their complex
conjugates in the commutation relations (67)–(70) to obtain immediately the resolving
equations (74)–(82). To find the remaining three equations we impose the Jacobi identities

[[Y,Z], Ȳ ] + [[Z, Ȳ ], Y ] + [[Ȳ , Y ], Z] = 0 (86)

3 The arithmetics 4 × 3 = 12 is misleading since not all of the 12 equations obtained in this way are independent.
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which entails the resolving equation (84) and

[[Y,Z], Z̄] + [[Z, Z̄], Y ] + [[Z̄, Y ], Z] = 0 (87)

which implies the remaining resolving equations (83) and (85). All other Jacobi identities are
satisfied automatically by virtue of the resolving equations.

Thus we have the commutator operator representation for the four-dimensional resolvent
system which seems to be the appropriate analogue of the Lax pair for the multi-dimensional
case that includes the Jacobi identities for the commutators. The linear spectral problem for
the set of operators of invariant differentiation should be studied in an attempt to arrive at
a generalization of the inverse scattering method suitable for a multi-dimensional resolvent
system. Then the complete system of resolving equations would present a very complicated
example of a multi-dimensional integrable system which will make it interesting by itself even
apart from its relation to CMA2. Here we only note that, irrespective of its possible relation
to the inverse scattering method this commutator representation can lead in a natural way to
non-obvious ansätze for special classes of solutions of the resolvent system.

Next we consider the integrability conditions between different pairs of resolving equations
chosen among the group of equation (81) and the complex conjugates of equations (82), (83)
and also the pair of equations (85) and the complex conjugate of equation (84). For example,
applying Z̄ and Y to both sides of the first and the third of these equations, respectively, and
then subtracting we find

Y (τ) + Z̄(θ)− 1

λ2
ḠY (G) = − 2

λ4

[
l(|F |2 + |G|2 + 3|l|2 − λ2) + l̄FG

]
+

1

λ2

[
2(ρ̄F + ρG) + θF̄ + 2λρ̄ + 3(l̄σ + lτ )

]
+

1

λ3

[
2l(F − F̄ )− l̄G

]
(88)

which is a differential consequence of the resolving equations. Integrability conditions for all
other pairs of the resolving equations mentioned above turn out to follow from equation (88)
and equations of the original resolvent system.

It will be useful to present the resolving equations in explicit form using the definitions
of the vector fields Y and Z:

τ̄ = τ +
1

λ
(F − F̄ ) (89)

ρ̄ = F̄lσ + F̄l̄τ +
l

λ
(F̄λ − 1)− 1

λ2
(lF̄ − l̄G) (90)

λ(σϑl + τϑl̄ − ϑσl − ρσl̄ − σu) + lϑλ −*σλ + 2σ = 0 (91)

λ(σρl + τρl̄ − ϑτl − ρτl̄ − τu) + lρλ −*τλ + 2τ = 0 (92)

λ(ϑτ̄l + ρτ̄l̄ − τ̄ϑl − σ̄ ϑl̄ + τ̄u) +*τ̄λ − l̄ϑλ +
1

λ
(F τ̄ − Ḡσ ) = 0 (93)

λ(ρ̄σl + ϑ̄σl̄ − σ ρ̄l − τ ρ̄l̄ + σu) + *̄σλ − lρ̄λ +
1

λ
(F̄ σ −Gτ̄) = 0 (94)

λ(τ̄σl + σ̄ σl̄ − σ τ̄l − τ τ̄l̄) + l̄σλ − lτ̄λ +
1

λ
(l̄σ − lτ̄ ) + ρ̄ − ϑ = 0 (95)

λ(ϑρ̄l + ρρ̄l̄ − ρ̄ϑl − ϑ̄ϑl̄ + ρ̄u − ϑu) +*ρ̄λ − *̄ϑλ +
1

λ
(l̄σ − lτ̄ )− (ρ̄ − ϑ) = 0 (96)
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lḠλ + l̄ + (l̄F − lḠ)/λ = λ(ρ − Ḡlσ − Ḡl̄τ ) (97)

l(1 + Fλ) = λ(ϑ − Flσ − Fl̄τ ) (98)

λF̄u + (F − λ)F̄λ − F̄ − (|G|2 + 2|F |2 + 3|l|2)/λ = −λ(τ + F̄lϑ + F̄l̄ρ) (99)

λGu + (F − λ)Gλ −G− 3(FG + l2)/λ = −λ(σ +Glϑ +Gl̄ρ). (100)

This is the full resolvent system for CMA2.
We shall conclude this section with the remark that the number of the resolving equations

could be reduced if we directly substitute explicit expressions for the auxiliary variables σ ,
τ , ϑ and ρ in terms of F,G and their first derivatives. However, then we would end up with
a much more complicated system of eight resolving equations containing second derivatives.
The price that we pay for dealing with the system of first-order equations is the usual one of
increasing the number of equations and unknowns. In addition to the original functions F,G
we have ‘gauge’ degrees of freedom σ, τ, ϑ, ρ.

6. Conclusion

We have presented the general framework for finding non-invariant solutions of CMA2 based
on the method of group foliation. We have made an important development in the method of
group foliation by showing the central role played by the commutator algebra of operators
of invariant differentiation. In particular, we have shown that this algebra provides the
commutator representation of the complete resolvent system. We emphasize that this method
is a general one, applicable to all partial differential equations admitting an infinite Lie group
of symmetries.

Studying the example of CMA2 in detail we have obtained results which are by themselves
major. We found the basis differential invariants from which all differential invariants can be
obtained by the action of the operators of invariant differentiation. Consequently, we are able
to write down all independent partial differential equations with one real unknown and two
complex independent variables which keep the same infinite symmetry subgroup as CMA2,
namely the group of unimodular biholomorphisms.

For group foliation of CMA2 we have established that third prolongation is sufficient. Then
we set up the automorphic and the resolvent systems. We have used the operators of invariant
differentiation and their commutator algebra as the basic objects in the theory of group foliation
of CMA2. They provide the simplest way of obtaining invariant integrability conditions of
the automorphic system. The commutator algebra of operators of invariant differentiation
produces relations between fourth-order invariants and integrability and algebraic compatibility
conditions of these equations projected on to the solution manifold of CMA2 are the resolving
equations. More than that, this commutator algebra together with its Jacobi identities
is equivalent to the complete resolvent system. Therefore, it provides a commutator
representation of the resolvent system which is a generalization of the Lax representation
for the multi-dimensional case. This representation may lead in a simple and natural way to
reasonable anzätse for interesting classes of solutions of the resolving equations. A study of
the linear spectral problem for the new operators of invariant differentiation Y,Z, Ȳ , Z̄ will
be important to decide whether the resolvent system is integrable within the framework of an
appropriate generalization of the inverse scattering method.

In this paper we have not attempted to find non-invariant solutions, but rather concentrated
on setting up the basic framework necessary for this purpose. We shall consider the problem
of constructing non-invariant solutions of CMA2 in a future publication.
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Appendix

Here we present some details of calculations of the third-order differential invariants.

The complete expressions for the vector fields
3
Xij and

3
Xijk introduced in equation (18)

of section 3 are quite complicated. For example, the vector fields with two indices are given
by

3
X11 = 1

2 i (u2∂u1 + 2u21∂u11 + u22∂u21 + u21̄∂1̄1 + u22̄∂u2̄1
+ 2u211̄∂u1̄11

+ 2u212̄∂u2̄11
+ u21̄1̄∂u1̄1̄1

+u21̄2̄∂u2̄1̄1
+ u221̄∂u1̄21

+ u222̄∂u2̄21
+ u22̄2̄∂u2̄2̄1

)

3
X22 = − 1

2 i (u1∂u2 + u11∂u12 + 2u12∂u22 + u11̄∂1̄2 + u12̄∂u2̄2
+ u111̄∂u1̄12

+ u112̄∂u2̄12
+ u11̄1̄∂u1̄1̄2

+u11̄2̄∂u2̄1̄2
+ 2u121̄∂u1̄22

+ 2u122̄∂u2̄22
+ u12̄2̄∂u12̄2̄

) (101)
3
X12 = 1

2 i
[
u2∂u2 − u1∂u1 + 2(u22∂u22 − u11∂u11) + u21̄∂u1̄2

+ u22̄∂u2̄2
− u11̄∂u1̄1

− u12̄∂u2̄1

+2(u221̄∂u1̄22
+ u222̄∂u2̄22

) + u21̄1̄∂u1̄1̄2
+ u21̄2̄∂u2̄1̄2

+ u22̄2̄∂u2̄2̄2

−2(u111̄∂u1̄11
+ u112̄∂u2̄11

)− u11̄1̄∂u1̄1̄1
− u11̄2̄∂u2̄1̄1

− u12̄2̄∂u2̄2̄1

]
but fortunately we shall not need the complete expressions for

3
Xij and

3
Xijk because further

prolongation will not be necessary. We shall use these generators only to enforce the invariance
conditions. Then starting with the simplest conditions and using their solutions we are allowed
to simplify the expressions for the remaining complicated basis vector fields.

We shall now turn to the construction of third-order differential invariants which are
annihilated by the basis vector fields. For this purpose we use the explicit expressions for the
basis vector fields starting with the simplest ones

3
X1111 = 1

2 i u2∂u111

3
X1122 = − 1

2 i (u1∂u112 − u2∂u122)
3
X2222 = − 1

2 i u1∂u222

3
X1112 = − 1

2 i (u1∂u111 − u2∂u112)
3
X1222 = 1

2 i (u2∂u222 − u1∂u122)

(102)

and their complex conjugates. The ten operators with four indices are linear combinations
of the eight partial derivative operators with respect to the third completely holomorphic, or
antiholomorphic partial derivatives of u. Hence only eight of them are linearly unconnected
and the rest are connected by two linear relations.

The invariance conditions require that the differential invariants * must be annihilated
by symmetry generators X. The simplest consequence is that they must be annihilated by
the four operators Xi in the unprolonged part of the symmetry generator (7) determined by
equation (10). This means that the original four independent variables, namely the coordinates
ζ i cannot enter into the expressions for differential invariants explicitly. The next simplest
conditions consist of

3
Xijkl* = 0 (103)

for all the vector fields (102) and their complex conjugates. It is obviously equivalent to

∂uijk* = 0 (104)
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that is, the invariants * do not depend on the eight purely holomorphic and antiholomorphic
third partial derivatives u. Hence we are left with only 12 third derivatives out of their total
number 20 and the total number of local coordinates which are permitted to be the arguments
of invariants is equal to 39 − 12 = 27.

Next we consider the operators
3
Xijk which are simplified by equations (104),

3
X111 = 1

2 i (u2∂u11 + u21̄∂u1̄11
+ u22̄∂u2̄11

)

3
X112 = − 1

2 i
[
u1∂u11 + u11̄∂u1̄11

+ u12̄∂u2̄11
− (u2∂u12 + u21̄∂u1̄12

+ u22̄∂u2̄12
)
]

3
X122 = − 1

2 i
[
u1∂u12 + u11̄∂u1̄12

+ u12̄∂u2̄12
− (u2∂u22 + u21̄∂u1̄22

+ u22̄∂u2̄22
)
]

3
X222 = − 1

2 i (u1∂u22 + u11̄∂u1̄22
+ u12̄∂u2̄22

)

(105)

and impose the conditions
3
Xijk* = 0 together with their complex conjugates on the differential

invariants. Solving these eight invariance conditions we obtain the result that the 12 third
derivatives which have been left and the six second derivatives of u can enter the expressions
for invariants only in the following 10 combinations:

α = ϕ1 β = ϕ2 γ = ψ1 ξ = ψ2 η = ϕu122̄ − ψu121̄ + µu12 (106)

together with their complex conjugates, where ϕ and ψ are defined by equation (24) in
section 3 and subscripts on ϕ and ψ have the usual meaning of partial derivative with respect
to coordinates. After the satisfaction of these eight conditions the number of differential
invariants is reduced to 19.

We have determined that the differential invariants * may depend on

* = *(u, u1, u2, u1̄, u2̄, u11̄, u22̄, u12̄, u21̄, α, β, γ, ξ, η, ᾱ, β̄, γ̄ , ξ̄ , η̄) (107)

where we note that the number of independent variables in the argument of * above is the
same as the total number of independent variables in the third prolongation after imposing
3
Xijk* = 0 and equations (104). The remaining invariance conditions are

3
Xij* = 0. The

explicit expressions for these operators are given by

X̃11 = u2∂u1 + u21̄∂u1̄1
+ u22̄∂u2̄1

+ β∂α + ξ∂γ + γ̄ ∂ᾱ + ξ̄ ∂β̄ +
1

u1
(u2η + ψβ − ϕξ)∂η

X̃22 = u1∂u2 + u11̄∂u1̄2
+ u12̄∂u2̄2

+ α∂β + γ ∂ξ + ᾱ∂γ̄ + β̄∂ξ̄ +
1

u2
(u1η + ϕγ − ψα)∂η (108)

X̃12 = u2∂u2 − u1∂u1 + u21̄∂u1̄2
+ u22̄∂u2̄2

− u11̄∂u1̄1
− u12̄∂u2̄1

− α∂α + β∂β − γ ∂γ

+ξ∂ξ − ᾱ∂ᾱ − β̄∂β̄ + γ̄ ∂γ̄ + ξ̄ ∂ξ̄

where we have dropped inessential overall factors in equations (101)

3
X11 = 1

2 i X̃11

3
X12 = 1

2 i X̃12

3
X22 = − 1

2 i X̃22 X̃īj̄ = (
X̃ij

)
and transformed to the auxiliary variables (106). This transformation is well defined because,
as we have already remarked, it preserves the total number of non-trivial independent variables
in the third prolongation and is one-to-one. The Lie algebra of the vector fields X̃ij is presented
in the table 2. Here the commutators of the operators [X̃ij , X̃kl] are placed at the intersection
of the line and column corresponding to the operators X̃ij and X̃kl , respectively. The result is
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Table 2. Lie algebra of second-rank vector fields on Z3(M).

X̃11 X̃22 X̃12

X̃11 0 X̃12 −2X̃11

X̃22 −X̃12 0 2X̃22

X̃12 2X̃11 −2X̃22 0

the Lie algebra of SL(2,R). Since X̃ij commute with X̃īj̄ the total Lie algebra is the direct
product SL(2,R)× SL(2,R).

Using the explicit expressions (108) we solve the six invariance conditions

X̃ij* = 0 (109)

together with their complex conjugates, thus reducing the number of invariants to 19−6 = 13.
Solving these remaining conditions for obtaining the full set of differential invariants, we obtain
the explicit expressions (19)–(23) for all the functionally independent third-order differential
invariants which are presented at the end of section 3.
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